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Coastal habitats (e.g., seagrass beds, shallow mud, and sand flats) strongly influence

survival, growth, and reproduction of marine fish and invertebrate species. Many of these

species have declined over the past decades, coincident with widespread degradation

of coastal habitats, such that an urgent need exists to model the quantitative value of

coastal habitats to their population dynamics. For exploited species, demand for habitat

considerations will increase as fisheries management contends with habitat issues in

stock assessments andmanagement in general moves toward amore ecosystem-based

approach. The modeling of habitat function has, to date, been done on a case-by-case

basis involving diverse approaches and types of population models, which has made

it difficult to generalize about methods for incorporating habitat into population models.

In this review, we offer guiding concepts for how habitat effects can be incorporated

in population models commonly used to simulate the population dynamics of fish

and invertebrate species. Many marine species share a similar life-history strategy as

long-lived adults with indeterminate growth, high fecundity, a planktonic larval form,

and benthic juveniles and adults using coastal habitats. This suite of life-history traits

unites the marine species across the case studies, such that the population models

can be adapted for other marine species. We categorize population models based on

whether they are static or dynamic representations of population status, and for dynamic,

further into unstructured, age/size class structured, and individual-based. We then use

examples, with an emphasis on exploited species, to illustrate how habitat has been

incorporated, implicitly (correlative) and explicitly (mechanistically), into each of these

categories. We describe the methods used and provide details on their implementation

and utility to facilitate adaptation of the approaches for other species and systems.

We anticipate that our review can serve as a stimulus for more widespread use of

population models to quantify the value of coastal habitats, so that their importance can

be accurately realized and to facilitate cross-species and cross-system comparisons.
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Quantitative evaluation of habitat effects in population dynamics will increasingly be

needed for traditional stock assessments, ecosystem-based management, conservation

of at-risk habitats, and recovery of overexploited stocks that rely on critical coastal

habitats during their life cycle.

Keywords: dynamic energy budget model, habitat value, individual based model, integral projection model, matrix

model, nursery habitat, population dynamics, population model

INTRODUCTION

A focus on integrating the role of habitat into population
dynamics and stock assessment models to estimate how changes
in habitat affect recruitment, population abundance, and fishery
yield has been growing worldwide (NMFS, 2010, 2011; Caddy,
2013; Seitz et al., 2014), which mirrors a similar emphasis
in macroecology and biogeography on the integration of
environmental features in community models (Cabral et al.,
2017). Coastal habitats, such as seagrass beds, shallow subtidal
and intertidal habitats, kelp beds, near-shore open water, salt
marshes, and rocky bottom, serve as locations for spawning,
nurseries, feeding, sheltering, and migration corridors (Seitz
et al., 2014). Although the influence of coastal habitats on
specific rates of survival, growth, and reproduction of marine
species has been documented widely (Beck et al., 2001; Heck
et al., 2003; Minello et al., 2003; Vasconcelos et al., 2014),
examples of quantifying the absolute value of these habitats
to the population dynamics of marine species are limited.
Consequently, it has been difficult to estimate the optimal extent
of habitat required for the persistence and sustainable use of
exploited species, and therefore, to effectively manage habitat
with respect to the abundance of exploited species. In addition,
many species inhabit linked sets of primary (e.g., seagrass beds)
and secondary (e.g., salt marsh fringed coves and shorelines)
nurseries (Lipcius et al., 2007). Yet there is little to no information
on the relative value of these different habitats to the overall
population dynamics (Nagelkerken et al., 2015; Litvin et al.,
2018), leading to the recognition that effective management will
require modeling the effects of multiple habitats upon population
dynamics (NMFS, 2010, 2011). Progress in quantitatively linking
how changes in various habitats affect fish and invertebrate
population dynamics is critical becausemany species, particularly
exploited ones, that use coastal habitats have declined over
the past decades (Anderson et al., 2012). These declines have
coincided with concerns about widespread degradation of coastal
habitats (Airoldi and Beck, 2007).

Modeling is often used to assess habitat effects at the
population level because of limitations in empirical approaches.
Monitoring data typically used for determining trends in fish
populations (e.g., Catch Per Unit Effort, CPUE) rarely include
simultaneous monitoring of habitat quality and quantity at
spatial and temporal scales to allow for direct incorporation
of habitat variables as covariates. When such information on
habitat quantity and quality does exist, the analysis is still only
correlative because other factors and stressors almost always co-
vary, to differing degrees, with changes in habitat. An alternative
and more mechanistic approach relies on understanding how

attributes of the habitat influence the vital rates of survival,
growth, reproduction, and movement; however, these data
are typically generated via small-scale field experiments and
laboratory studies and operate at the level of groups of
individuals dictated by the experimental design being used.
Population modeling that integrates habitat characteristics and
their effects on vital rates can provide a bridge between small-
scale reductionist studies and the resulting population changes
observed in broader-scale monitoring programs. Modeling uses
reductionist and mechanistic studies to formulate relationships
between habitat attributes and growth, mortality, reproduction,
and movement, and then may use the monitoring data for model
evaluation (e.g., calibration, validation) at the population level.

In this review, we offer some guiding concepts for using
population models to assess habitat effects for coastal fish
and invertebrate species, and offer examples where habitat
effects have been incorporated into population models and their
effects assessed quantitatively. We describe the methods involved
in each of the modeling approaches and provide details on
their implementation and utility to facilitate their approaches
being adapted for other species and systems. Our examples
and discussion provide an initial foundation for incorporating
habitat into population models and eventually for contributing
to the determination of the quantitative value of coastal nursery
habitats, feeding grounds, and spawning areas to population
dynamics of fishes and invertebrates. Incorporation of habitat
into population models will continue to accelerate as the
human-related pressures on coastal habitats continue to increase,
recovery plans for overexploited fisheries are developed, fisheries
management is pushed toward ecosystem-based approaches,
and management actions include spatially-based actions such as
marine protected areas (NMFS, 2010, 2011;McCauley et al., 2015;
Punt et al., 2015; Peck et al., 2016).

HABITAT TERMINOLOGY AND
DEFINITIONS

Modeling of habitat effects on population dynamics requires clear
and precise definitions about the specific attributes of the habitat
being assessed, what demographic processes they are linked
to, and how they are incorporated into the model structure.
Moreover, when aspects of habitat are included in a model there
is often a tacit assumption that other attributes either remain
unchanged or change in some coordinated or correlated way
with the included attribute. Assumptions about what is meant by
habitat need to be stated clearly, as left undefined the assumptions
will vary among systems and among investigators.
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An example of clear definitions of habitat is provided by
the model of Haas et al. (2004), later expanded upon by Roth
et al. (2008), on the effects of salt marsh area and salt marsh
edge on survival of brown shrimp Farfantepenaeus aztecus in
northern Gulf of Mexico coastal habitats. In their model, they
explicitly defined habitat in a grid of 100 × 100 cells, each being
1 m2 and each assigned a habitat type. The term “marsh” was
used to refer to the entire grid of cells on a habitat map. Cells
were assigned as either “vegetated” or “water” to determine the
proportion of total marsh area that was vegetated, and assigned
as “edge” when their cell bordered the interface between the
vegetation and water. Vegetated cells on the border of edge
were “vegetated edge” and water cells on the other side of the
edge cell were “water edge,” which allowed for assessment of
the main and interactive effects of marsh vegetation area and
marsh edge area. Habitat was therefore defined at the scale of
the marsh. At the microhabitat scale (cell = 1 m2), “vegetated”
reflected presence or absence of marsh vegetation. Hourly water
levels enabled shrimp access to cells (i.e., movement) based on
the cell’s habitat type, which affected growth and mortality rates;
shrimp in vegetated cells had twice the growth rate and half the
mortality rate of shrimp in water cells. Movement was based
on shrimp moving to a cell within a defined neighborhood
(e.g., eight surrounding cells) that had the highest growth rate.
The magnitude of movement also affected a vital rate; mortality
increased with number of cells visited. This case study uses
complicated, but clearly defined, relationships between habitat
and vital rates. Such precise definitions of habitat effects allow
for questioning of the assumptions and comparisons between
different studies and modeling approaches.

IMPLICIT (CORRELATIVE) AND EXPLICIT
(MECHANISTIC) INTEGRATION OF
HABITAT INTO MODELS

Various schemes have been used to classify ecological models, and
specifically population dynamics models. Our classification was
designed to assist in discussing how habitat has been included in
example models. Such a classification scheme helps to illustrate
possible approaches for including habitat considerations in
future population modeling efforts to develop new, or adapt
existing, models to address habitat-related questions. All of the
classification schemes use a typology to assign models to classes,
and many use overlapping terms and some of these terms are
defined somewhat differently within each scheme. For example,
Jørgensen (2008) and Bartell et al. (2003) offer schemes for
ecological models in general, with Jorgensen’s scheme designed
to assess new modeling types since the 1970s and Bartell et al.’s
dealing with identifying how models can be used to predict the
ecological risks from chemical exposure. Other schemes that
have been proposed further divide some of the classes in our
classification scheme. For example, Sillero (2011) offers further
division within the category of species distributionmodels, which
is a more detailed view of our category of static models.

Of particular relevance is the classification scheme used by
Beissinger and Westphal (1998), who also examined population

models although they were focused on population viability
analysis for endangered species. Beissinger and Westphal (1998)
used the classes of (1) analytical, (2) deterministic single-
species, (3) stochastic single-species, (4) metapopulation, and (5)
spatially-explicit. Their scheme focused on parameter estimation
and uncertainty when data and empirical information are
limiting, typical for endangered species. Their use of the terms
implicit vs. explicit differs from ours. They refer to how space is
represented as “implicit” when there are discrete habitat patches
without the intermediate environment between patches defined
(typical of metapopulation models) vs. “explicit” treatment of
space as when there is an interconnected grid of contiguous cells
comprising a complete domain (as in their category of spatially-
explicit models). As described further below, we used implicit
vs. explicit to delineate how habitat effects are represented
in population models, with implicit meaning that the habitat
variables are not defined but their effects are included (assumed
part of) growth, mortality, reproduction, or movement rates and
explicit meaning that the characteristics of habitat are defined
and used in the model equations to alter rates (e.g., substrate
type is specified and its magnitude affects the growth rates
of organisms).

As such, our classification distinguishes between habitat
effects incorporated into models explicitly or implicitly (Kearney
and Porter, 2009; Rose et al., 2015b) by the manner of
integration of the four main vital rates–reproduction, mortality,
immigration, and emigration–into the model. In explicit
integration, one or more of the vital rates is altered directly as
a mechanistic function of a feature of the habitat. For instance,
if field experiments show that mortality rate of individuals is
a decreasing exponential function of habitat complexity (e.g.,
shoot density of seagrass), then mortality rate could be integrated
into the model as d = µe−ρh, where µ is mortality rate
when shoot density is optimal, h = seagrass shoot density, and
ρ is a parameter relating shoot density to individual survival.
For further examples, refer to Kearney and Porter (2009), who
provide a general treatment of implicit and explicit incorporation
of habitat in models.

An implicit representation of habitat uses a correlative (i.e.,
statistical) relationship between habitat and a characteristic of
the population, such as density (Kearney and Porter, 2009).
For example, if field surveys demonstrate a correlation between
faunal density and the species of seagrass in a habitat, then habitat
could be integrated implicitly in a model by varying carrying
capacity (K) for different seagrass species. Here it is not known
how habitat affects reproduction, mortality, immigration and
emigration, only that density is related to seagrass species in
a habitat. In each of the examples that follow in the text and
which are categorized in Table 1, we define habitat specifically,
and justify why each example represents implicit or explicit
representation of habitat. Note that habitat, implicit, and explicit
are in italics in the relevant text sections so that the reader can
easily find the descriptions.

Similar predictions can be obtained from explicit and implicit
representations, and both approaches can deal with habitat
effects at the population level. Simulating different scenarios of
habitat change can be challenging with implicit representations
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TABLE 1 | Key features of the dynamic models used as examples.

Type Formulation Species Response Habitat effects Source

CONTINUOUS-TIME MODELS

U ODE Generic N Implicit (a)

U 3 coupled ODEs Eastern oyster Nε Explicit (b)

S 4 coupled ODEs Generic N Explicit (c)

(2 J, 2 A)

DISCRETE-TIME MODELS

S Coupled submodels Common sole N Implicit (d)

(L, J, A)

S Stage-based matrix Eastern oyster reef-specific λ Explicit (e)

(L, J, A)

S Individuals (J) Spiny lobster N Explicit (f)

S Individuals (J) Herring growth, S Explicit (g)

S Stage-based matrix Blue crab λ Explicit (h)

(J, age-1, A)

S Stage-based matrix Halibut λ Implicit (i)

(L, J, SA, A)

S Individuals Striped bass size, S Explicit/Implicit N (j)

The sources for the models are: (a) this paper - variation of (b); (b) Jordan-Cooley et al. (2011); (c) Van de Wolfshaar et al. (2011); (d) Rochette et al. (2013), Archambault et al. (2018);

(e) Puckett and Eggleston (2016); (f) Butler et al. (2005); (g) Maes et al. (2005); (h) Ralph (2013); (i) Fodrie et al. (2009); (j) Rose et al. (1993). U, unstructured; S, structured; I, implicit;

E, explicit; ODE, ordinary differential equation; L, eggs/larvae; J, juveniles; SA, subadults; A, adults; N, abundance, biomass; S, survival; ε , volume of oysters, reef and sediment; λ,

population growth rate.

because the new changes in vital rates must be derived external
to the model (Diamond et al., 2013). If done appropriately,
simulating a habitat change with explicit representation is more
straightforward as the habitat variable in the model is simply
changed and the resulting effects on vital rates are automatically
imposed within the model.

We often mistakenly consider population models to not
include effects of habitat unless an explicit representation is
present. Models are based on a set of conditions that often
include unstated assumptions about habitat conditions and
which underlie the values assigned to some parameters. Habitat
effects are present in most population models, but are often
implicitly part of the formulation and values assigned to
parameters, and thus unless parameters related to habitat are
subsequently adjusted, the habitat effects are implicitly assumed
to remain stable over time.

Incorporation of habitat effects implicitly can be illustrated
using the density-dependent, logistic growth model. In this case,
the rate of population change is:

dN

dt
= rN(1−

N

K
) (1)

whereN is population size, t is time, r is the instantaneous rate of
population growth per unit time, and K is the carrying capacity
of a given habitat in biomass or number of individuals.

The solution to Equation (1) is:

Nt =
N0K

N0 + (K − N0)e−rt
(2)

where Nt is the population size at time t and N0 is the initial
population size at time t0.

To model habitat effects implicitly without a specified
mechanism, one could presume that an expected loss in habitat
will reduce the annual population growth rate by 50% (e.g.,
from r = 0.4 to 0.2) or lower the carrying capacity by 50%
(e.g., from K = 100 to 50). The resulting deviations in the
rate of population growth as a function of population size or
the population trajectory as a function of time can be solved
analytically to determine the quantitative population-level effects
of habitat alterations.

Explicit representation of habitat effects requires that the
mechanistic relationship (magnitude and shape) between a
habitat measure and one or more vital rates (or other model
parameters) be specified. The advantages to the explicit approach
are that the effects imposed on vital rates in response to changes
in habitat are transparent, assumptions are clearly defined,
and a mechanistic basis can be identified. However, the data
needs shift from long-term monitoring-type data sets based on
correlation between habitat and population measures, to data
derived from fine-scale, short-term, process-oriented field and
laboratory experiments.

A simple example of incorporating habitat explicitly into the
logistic growth function applied to oyster comes from Jordan-
Cooley et al. (2011). They used the model to understand why
high-relief reefs appear to be more stable and sustainable,
and specifically how oyster reef height interacts with sediment
deposition and possible burial of the oysters to produce
alternative stable states. The logistic population growth model
was modified as:

dN

dt
= rN(1−

N

K
)− µN − (1− f )εN, (3)
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where µ is mortality rate from predation and disease year−1, ε is
mortality rate due to sediment year−1, and f is a sigmoid function
f =

1
(1+e−φd)

with input d used to scale the effect of sediment-

induced mortality. The final term in the equation is the explicit
habitat effect because mortality rate is a function of a habitat
feature, reef height. The variable d reflects habitat quality, which
is represented by the difference between population abundance
N minus sediment S, and is given by d =

N
2 − S. The function

f , which depends on d, is bounded by 0 and 1, and uses the
parameter φ to adjust the shape of the function. As φ increases,
the function f has a sharper transition from 0 to 1. In this
model, it is assumed that population abundance is unaffected by
sediment until more than half of the population is covered by
sediment, such as happens on restoration oyster reefs (Colden
and Lipcius, 2015).

SPECIFICATION OF FUNCTIONAL
RELATIONSHIPS

Habitat-Process Relationships
For both explicit and implicit representations of habitat effects in
population models, some quantification of the effects of changes
in habitat on organism vital rates is required. The relationships
between habitat and vital rates can be independently integrated
or interactively linked in the model. An independently integrated
relationship is a one-way effect where the habitat only influences
vital rates and population dynamics, and is not itself affected. For
instance, in the oyster model by Puckett and Eggleston (2016),
oyster population dynamics was affected by location and quality
of reef habitat, but associated changes in the populations did not
affect the features of different habitats. In contrast, the oyster
model by Jordan-Cooley et al. (2011) used coupled, mechanistic
equations that represented the quality and quantity of reef
habitat, which affected oyster population abundance, and oyster
abundance in turn affected reef habitat quality and quantity.

Another issue in adding habitat to models is specification
of the shape of the relationship between the vital rates and
the quantity and quality of habitat. We often have observations
or information on vital rates at discrete values of habitat;
determining whether there is continuous change in vital rates
over the range of habitat values or whether there are threshold
effects is difficult. Physical habitat can be simply viewed as having
an effect like other environmental variables, such as temperature,
whereby vital rates change predictably and continuously over the
range of habitat values or as having no effect until habitat goes
below a critical level (e.g., threshold response). Distinguishing
between these two possibilities is important because they can
have very different effects at the population level.

The domain within which the habitat-process relationship is
valid and realistic should be defined. We usually have empirical
information centered on the baseline condition in simulations.
For example, we often use a specific set of experiments to
define the habitat-process relationship, and a specific time
period to calibrate or validate the population model, which
may have its own associated habitat conditions. The habitat-
process relationship often has less information at the extremes

of habitat characteristics (quality and quantity attributes) and
so has higher uncertainty at low and high values of habitat
within the specific relationship. When the question involves
how new habitat conditions (e.g., loss or restoration) will affect
the population, care must be taken to ensure that the new
habitat conditions are still within that part of the habitat-process
relationship where we have sufficient confidence in its form.

A relationship between habitat and a population’s response
can be derived that plugs directly into the structure of the
population model, or a sub-model external to the population
can be developed as part of a hybrid modeling approach. Some
adjustment (scaling) is necessary with the hybrid approach
because the external sub-models typically apply to a portion of
the life cycle under simplified environmental conditions and to a
portion of the total spatial area covered by the population model.
Two modeling approaches, either separately or combined, that
are good candidates for both direct insertion into population
models or used as external submodels are Individual Based
Models (IBM) and Dynamic Energy Budget (DEB) models
(see below).

Density Dependence
Integrating habitat effects into a population model that also
includes density dependence in growth, reproduction, mortality,
or movement requires careful consideration of the form of the
habitat-process relationship. Incorporating density-dependence
into populationmodels remains a challenge (Higgins et al., 1997),
especially for site-specific applications and models whose results
strongly influence management actions (e.g., fisheries stock
assessment). Unstructured models appear simpler but specifying
how aggregated parameters change in response to abundance or
biomass is difficult. Structured and individual-based approaches
have easier-to-interpret parameters but often require information
on how multiple processes vary by age or life stage in response
to abundance or biomass. These issues carry over to situations
including habitat considerations in dynamic models.

In many situations, there is representation of density-
dependence in an existing population model, and the idea is to
add habitat effects to the existing model. Even in the case of a
new model being developed in concert with the consideration of
habitat, how to include density-dependent effects as part of the
habitat or in other life stages entails vigilant formulation. Some
of the density-dependent effects may already be due to the habitat
effect (double-counting), or adding the habitat effect can distort
the overall density-dependent response for which the model was
configured or fitted and already deemed realistic. In addition,
the form of density dependence requires careful consideration,
whether as negative density dependence which has regulatory
and stabilizing effects on population dynamics or as positive
density dependence which can lead to destabilizing effects,
especially under Allee effects at low population abundance.

A common situation when adding habitat effects to a model is
when the population model uses a spawner-recruit relationship
to encapsulate early life-stage dynamics into a single relationship.
Yet, many habitat effects of interest operate on certain life
stages, and often multiple life stages differently (e.g., larvae vs.
juveniles). The challenge is how to modify the spawner-recruit
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relationship to allow for changes in different habitats specific to
life stages, while maintaining the same original spawner-recruit
relationship (Rothschild, 1986). Separating life stages between
spawning and recruitment (e.g., eggs, larvae, and young-of-the-
year juveniles) makes linking to habitat effects easier but then
requires a reformulation of density dependence at the life-stage
level to maintain the original spawner-recruit relationship.

Transport and Behavioral Movement
Movement among habitats that differ in quality is a common
feature of the life cycle of marine species. The interaction between
habitat quality and movement can influence foraging, predator-
avoidance, migration, and avoidance of degraded habitats
(Watkins and Rose, 2014). Habitat characteristics affect all types
of movement because they often serve as the cues determining
departure decisions by individuals and selection of destinations,
such as larval settlement onto bottom habitat (Stockhausen
and Lipcius, 2003; North et al., 2008). The consequences of
transport and movement to population dynamics are their
effects on the vital rates of growth, mortality, and reproduction
rates as the individual experiences different habitat conditions
because of its movement to new locations. Simulating larval
transport to examine the connectivity of spawning and nursery
areas has a long history (Cowen et al., 2000; Levin, 2006).
Behavioral modeling of larvae, juveniles and adults using habitat
as cues is a relatively recent and rapidly advancing field that
combines biophysical modeling, physiology, and movement
ecology (Stockhausen and Lipcius, 2003; North et al., 2008;
Watkins and Rose, 2013; Allen et al., 2018).

Barbeau and Caswell (1999) provide an excellent example that
integrates movement across habitat patches. In their study, a
stage-based, multi-patch matrix model was used to quantify the
effects of predation and dispersal between patches on sea scallops,
Placopecten magellanicus, in nursery habitats. In their system,
density-dependent dispersal modulated the effects of predation
on scallop abundance.

HABITAT EFFECTS WITHIN DIFFERENT
TYPES OF POPULATION MODELS

In this section, we provide details and examples of mathematical
and statistical modeling approaches that can be used for
quantifying habitat value at the population level (Figure 1).
The modeling approaches are first organized as either dynamic
(= mathematical) or static (= statistical). We focus on habitat
suitability, now subsumed under the newer term of species
distribution modeling, which uses statistical methods for fitting
and evaluation, within the static model category because they
are a very common static model formulation for assessing
habitat effects at the population level (Gutiérrez et al., 2005;
Vasconcelos et al., 2010). While statistical analyses play an
important supporting role (e.g., specification of underlying
relationships) in dynamic models, statistical approaches are the
major analysis method used in static models. Dynamic models
are then presented according to the currency and level of
organization followed in the models: unstructured, structured,

FIGURE 1 | Mathematical modeling approaches that can include habitat

variability. IBM, Individual Based Model; DEB, Dynamic Energy Budget model.

We do not consider community food web or ecosystem models, such as

EcoSpace, in this review.

and individual-based. The features of the dynamic model
examples are summarized in Table 1. Our focus is on population
models, which includes single-species and multi-species (e.g.,
predator-prey) models.

Unstructured and Structured Population
Models
Population models can be considered as unstructured or
structured. Unstructured population models assume that all
individuals within the modeled population are identical and
the state of the population is characterized by one or a
few model variables such as total population abundance or
biomass. Unstructured models are appropriate for theoretical
analyses, populations with simple life cycles, and for analysis
of populations with limited information. For many populations,
sufficient data are not available to allow division of the population
into categories (individual, age, size, or sex), and unstructured
population models are then the most suitable option. For other
populations, a structured approach is appropriate when vital rates
vary among individuals or with age, size, stage, or sex. In this case,
model variables characterize categories of the population, which
sum up to the total population.

Unstructured models are used less frequently than structured
approaches for management decision-making. Notable
exceptions are the oyster reef analyses described above that
were used to plan and implement oyster reef restoration in
Chesapeake Bay (Lipcius et al., 2015), and the application
of population models to oyster management (Wilberg et al.,
2013) and marine reserves (St. Mary et al., 2000). Fisheries
management sometimes uses unstructured models like the
logistic formulation for data-limited species (Prager, 2002;
Hayes et al., 2009). Increasingly, management questions require
more detailed representations of the population to realistically
represent changes in vital rates within the life cycle and because
management questions are gravitating toward analyses that are
better answered with explicit treatment of space. Unstructured
approaches do not permit simple treatment of complex life
cycles in which life stages use different habitats. However,
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they do provide insight into general population behavior
in the context of habitat-specific questions with relatively
little parameterization effort. The simplicity of unstructured
approaches is both their strong point and their weakness.

A recent modeling alternative to categorizing a population by
age or stage involves defining survival, growth, and reproduction
as continuous functions of size and age with Integral Projection
Models (IPMs). These models allow for separation of the
independent and collective effects of age and size on population
dynamics (Ellner and Rees, 2006) and can be parameterized
either with empirical data on survival, growth, and reproduction
of individuals (Ellner and Rees, 2006) or with empirically derived
relationships of survival, growth, and reproduction as a function
of size and age (White et al., 2016). Some recent examples of IPMs
for marine species include ones dealing with oyster restoration
(Moore et al., 2016, 2018), long-distancemigration in fish (Färber
et al., 2018), and coral and clam population dynamics (Schreiber
and Moore, 2018).

An additional classifier we did not consider was whether
population models are formulated as deterministic or stochastic.
Stochastic formulation implies that values used in simulations
of some or all parameters are generated from probability
distributions so that the values of those parameters differ through
time within a simulation or differ among simulations (Higgins
et al., 1997; Mosnier et al., 2015). All of our classes of models can
be either deterministic or stochastic; the only difference within a
category is whether one needs to know how habitat would affect
not only the mean or best estimate of a parameter (deterministic
case) but also potentially the variability in those parameter values
for thorough adjustment of parameters in stochastic models.

Dynamic Models: Differential Equation
(Continuous-Time) Models
Unstructured and structured models are commonly deployed
in continuous time (Table 1). Continuous time models, or
differential equation models, are suited for time-dependent
and equilibrium analysis of the dynamics of the population.
In general, this type of model describes a population with
one equation, or it consists of multiple equations representing
stages or other interacting species. The model may or may not
incorporate a spatial component, such as multi-patch models,
and habitat effects can be represented implicitly or explicitly.
When habitat is explicitly taken into account, this type of model
could be used to aid management directly, whereas when habitat
is only implicitly integrated into the model more analyses are
required to assess management questions related to habitat. For
example, an implicit habitat analysis would require external
calculations to the model that relate each management action to
changes in vital rates or values of specific model parameters. The
outcome of this type of model is population dynamics, mostly
presented as analytical (e.g., equilibria) or as numerical solutions.
Analysis of differential-equation models also permits discovery
of conditions for which multiple stable states exist (May, 1976;
Scheffer et al., 2012).

As examples of the use of continuous-time models, we
describe two modeling efforts (Table 1), one that explicitly

models the effects of nursery habitat on the population dynamics
of an exploited fish species (Van de Wolfshaar et al., 2011),
and another that explicitly examines the effects of habitat upon
abundance of an oyster population (Jordan-Cooley et al., 2011).

Van de Wolfshaar et al. (2011) adopted a biomass-based
stage-structured model (De Roos et al., 2008) to analyze the
consequences of habitat-specific, resource-dependent growth
and reproduction for population dynamics. The main advantage
of the biomass-based, stage-structured model is its ease of
analysis with conventional mathematical techniques used to
analyze the behavior of systems of differential equations (Kot,
2001). The model represents a consumer population with a
juvenile stage J, an adult stage A, and separate resources for
juveniles and adults (RJ and RA, respectively) corresponding
to different juvenile and adult habitats. Hence, juveniles do
not compete with adults; intraspecific competition only occurs
within each stage. Habitat-specific resources grow at rate δ and
equilibrate at carrying capacities RCJ and RCA when consumers
are absent. Consumption by juveniles and adults follows a
Holling Type II functional response (Holling, 1959; Hassell,
1978) with a half-saturation constant H and a mass-specific
maximum ingestion rate Imax, which are equal for adults and
juveniles. Ingested resources by each stage i are converted with
an efficiency minus the metabolic rate, yielding net biomass
production υi(Ri) of each stage when feeding on a particular
resource Ri. A set of four differential equations describes the
biomass dynamics of the resources, juveniles and adults:

dRA

dt
= δ(RCA − RA)−

RA

H + RA
ImaxA (4)

dRJ

dt
= δ(RCJ − RJ)−

RJ

H + RJ
ImaxJ (5)

dJ

dt
= υ+

A RAA+ υJRJJ − γ υ+

J RJJ − µJJ (6)

dA

dt
= υARAA− υ+

A RAA+ γ υ+

J RJJ − µAA (7)

where µi is the mortality rate in stage i, γ υ+

J RJ is the rate

at which juveniles mature into the adult stage, and υ+

A RA is
the reproduction rate. The maturation rate of juveniles depends
on the net biomass production of the juvenile stage, the size
range over which juveniles grow from egg to adult, and juvenile
mortality. All surplus adult biomass is converted into offspring,
such that reproductive rate equals net biomass production of
adults. Biomass can only be transferred between stages when net
biomass is produced. Conversely, when net biomass production
is negative, the stage suffers starvation mortality, and neither
recruitment nor maturation occurs.

In the Van de Wolfshaar et al. (2011) model habitats were
defined as exclusive adult and juvenile habitats with separate
resources (i.e., prey). The modeled habitats were generalized and
not specific to any particular fish species. Habitat was integrated
explicitly into the model because reproductive rate depended
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FIGURE 2 | Biomass of adult A and juvenile J life stages as a function of

relative habitat productivity (x) showing where stages are under stable (solid

lines) and unstable (dashed lines) equilibria. Alternative stable states occur

between the hatched arrows, at which one of the alternative equilibria

collapses and beyond which only one stable equilibrium occurs. Adult µA and

juvenile µJ mortality rates were both set to 0.05. Figure reproduced with

permission (Inter-Research) from Van de Wolfshaar et al. (2011).

explicitly on the amount of resource (prey) in juvenile and adult
habitats; mortality rates were not dependent on habitat.

Van de Wolfshaar et al. (2011) explored the consequences of
differing productivity in juvenile and adult habitats by adopting
a baseline resource carrying capacity in both habitats Rmax that
was scaled as RCJ = exRmax and RCA =

1
ex Rmax. At x = 0,

juvenile and adult habitats are equally productive, whereas when
x < 0, adult habitat is more productive than the juvenile
habitat and vice versa. Hence, habitat is modeled directly by
modifying the relative productivity of juvenile and adult habitats,
which are assumed to be equal in area. The relative difference
in habitat productivity as a function of scalar x is shown in
Figure 2. Differences in relative productivity between juvenile
and adult habitats produced alternative stable states with more
biomass in either the juvenile or the adult stage. When fishing
mortality was added to the model, the simulations showed that
improving juvenile habitat was more effective in increasing adult
biomass than a reduction in fishing mortality of adults. A similar
stage-structured approach was applied to model the effects of
offshore migration of juvenile plaice (Pleuronectes platessa) into
adult habitat, and its consequences on population dynamics and
fisheries yield (Van de Wolfshaar et al., 2015).

Jordan-Cooley et al. (2011) used a set of differential equations
in an unstructured model that explicitly integrated habitat (i.e.,
reef height effect on mortality) to study the effects of live oysters,
dead oysters (reef matrix), and sediment deposition rates on the
viability of oyster reefs. The model analyzed the rate of change
in volume per m2 of live oysters N, dead oyster shell R, and
deposited sediment S on an oyster reef with respect to time t
in years. The collective volume of live oysters, dead oyster shell,
and deposited sediment therefore represents an oyster reef. The
volume per m2 can be converted directly to reef height because it
is calculated as the volume of a 1-m2 unit area.

In the Jordan-Cooley et al. (2011) model habitats (i.e.,
oyster reefs) were defined by the volumes of live oysters, dead
oyster shell, and sediment on the reef. Habitat was integrated
explicitly into the model because reproduction and survival were
dependent on functions of live oyster volume, dead oyster shell
volume, and sediment volume on the reef.

Live oyster volume N(t) in m3 (equivalent to reef height in
m for a 1-m2 area) is represented by Equation 3, with d =
N
2 + R − S and therefore dynamic in a complicated way because
all three variables vary with time and depend on the state of
the system. We used the same example (Jordan-Cooley et al.,
2011) earlier to illustrate explicit treatment of habitat in a logistic
model. Continuing with Equation 3, terms for natural mortality
due to disease and predation (µ) and mortality due to burial
by sediment ε were added separately to the logistic formulation
that already included mortality as part of r; the estimate for r
was therefore increased accordingly to avoid double-counting of
mortality sources. An important feature of f in Equations (3, 8,
and 9) is that its effect within the unstructured logistic equation
is an aggregate effect on the change in biomass and therefore
is non-specific as to how habitat affects reproduction, growth,
and recruitment.

The rate of change in dead oyster shell volume R is
modeled as:

dR

dt
= fµN + (1− f )εN − γR, (8)

where the two positive terms come from the death of live oysters
in Equation (3) and γ is the rate of loss of dead oyster shell due
to degradation year−1.

The rate of change in sediment volume on the oyster reef is:

dS

dt
= −βS+ Cg e

−
FN
Cg . (9)

where the first term is the rate of sediment erosion with a
rate β ; the volume of eroded sediment is proportional to the
volume of deposited sediment. The second term is the rate of
sediment deposition, which in the absence of oysters is C · g,
where C is a maximum possible deposition rate and g is a
decreasing function of reef height (N + R). The deposition rate
is maximal at the seafloor, and decreases as the reef height in
the water column increases. Biodeposition is a constant fraction
of sediment deposition. Filtration rate F per unit oyster volume
depends on the height-dependent sediment concentration, which
is proportional to C · g:

F =
Fmax

[Cg]max
[Cg] e

[Cg]max−[Cg]
[Cg]max , (10)

where Fmax is the maximum filtration rate, which occurs at
[Cg]max. The rate F scales linearly withCwhenC is low, it reaches
a peak at some intermediate, optimal sediment concentration,
and beyond this it decreases as oyster gills become clogged. The
sediment concentration [Cg] is that impinging on the reef at
the reef surface. The filtration function assumes that sediments
filtered by oysters are either expelled and move off the reef, or
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FIGURE 3 | Simulations of volume of live eastern oysters N (Crassostrea virginica), dead oyster reef R, and sediment S as a function of initial reef height Rt=0,

demonstrating alternative stable states of a positive equilibrium (left) and extinction (right). For all cases Nt=0 = 0.01 and St=0 = 0.01. (upper left) Rt=0 = 0.20;

(upper right) Rt=0 = 0.10. Figure reproduced with permission (Elsevier license 4451990372334) from Jordan-Cooley et al. (2011).

they become part of the underlying reef matrix and no longer
cover living oysters.

The model using equations for N (Equation 3), R (Equation
8), and S (Equation 9) examined the possibility and conditions
for alternative stable states in oyster reefs (Figure 3). Analysis of
the system of equations indicated that alternative stable states
were possible, and that the initial height of the oyster reef
determines the equilibrium state through its effects on mortality
rates (Jordan-Cooley et al., 2011). Only when the initial reef
height exceeded a threshold did the oyster reef persist at a positive
equilibrium (i.e., left panel of Figure 3); below the threshold
the oyster reef degraded to extinction as oysters were unable to
compensate for increased sediment deposition (i.e., right panel
of Figure 3).

Dynamic Models: Matrix and Difference
Equation (Discrete-Time) Models
Most discrete-time models in population dynamics are based
on a structured approach (Table 1). Given the complex life
histories of most marine species, which include larval, juvenile,
and adult phases that use different habitats, populations can
be expressed as a series of connected age, size, or stage classes
(Table 1). The basic form of these life histories is depicted in a
life-cycle diagram (Figure 4) and converted to a system of linked
difference equations, and in many cases, into a matrix projection
formulation that predicts the population vector at time t + 1
from the vector at time t (Figure 5). The matrix formulation is a
special case of the more general structured, discrete-time models
in which elements of the matrix are the transition probabilities
and the top row is fecundity (Leslie, 1945; Lefkovitch, 1965;
Caswell, 2001). We first present a structured (but not matrix)
discrete-time model that implicitly examines habitat effects on
the juveniles of common sole Solea solea (Rochette et al., 2013).
We then use three examples that use matrix formulations.
The models of blue crab Callinectes sapidus by Ralph (2013)
and eastern oyster Crassostrea virginica by Theuerkauf (2017)

FIGURE 4 | Top: Representative stage-based, life-cycle diagram and

associated transitions (F, G, P) of a population defined by three stages: larvae

(L); juveniles (J), and adults (A). F = fecundity, defined as the number of

offspring, P = probability of survival and remaining within a stage, and G =

probability of survival and growing into the next stage. Bottom:

Corresponding projection matrix and population vectors at times t and t+ 1 for

the population described above. The time step is usually one year. For species

that make ontogenetic migrations across larval, juvenile, and adult life-history

stages, the G parameters are often associated with a switch in habitat use.

illustrate how habitat effects can be analyzed explicitly, whereas
the Fodrie et al. (2009) model of California halibut Paralichthys
californicus illustrates how matrix-based population models can
be used with an implicit treatment of habitat effects.

Rochette et al. (2013) and then Archambault et al. (2018)
developed a Bayesian state-space, full life-cycle model for
common sole in the eastern English Channel. Themodel includes
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FIGURE 5 | Life cycle diagram for the blue crab Callinectes sapidus. An individual crab can be in one of four stages: juvenile, small age-1, large age-1, and adult

during the summer and winter. Summer to winter transitions are represented by the dashed lines, while the winter to summer transitions are represented by the solid

lines. All transitions have a 6-month time step. Note that survival and growth probabilities are straight lines, while the fecundity terms are curved lines. Figure

reproduced with permission (G. Ralph, copyright holder) from Ralph (2013).

different modules representing key processes acting in specific,
spatially separated habitats: (1) a population model for adults,
(2) a Lagrangian drift model for eggs and larvae settling to
different near-shore estuaries, and (3) a juvenile habitat suitability
module. This type of model allows various interacting pressures
to be examined and compared for their effects on the population,
such as fishing pressure on adults, climate-driven variability in
drift routes of larvae, and habitat suitability of juvenile nursery
habitats. Habitats were defined as five different nursey habitat
sectors. Habitat was integrated implicitly into the model because
mortality rates in nursery habitats were estimated by the relative
abundance of age 0 and age 1 juveniles.

A habitat suitability model, based on juvenile trawl surveys
coupled with a geographic information system, was used to
estimate juvenile densities and areas of suitable juvenile habitat
in each nursery sector. Rochette et al. (2013) estimated the value
of habitat of the five nursery areas, and demonstrated that the
value was not proportional to the area of each habitat (Figure 6).
Archambault et al. (2018) used themodel to show the importance
of nursery habitat area and quality for common sole. Simulating
nursery habitat recovery (both surface area and quality) in one
single estuary, the Bay of Seine, demonstrated that the population
would increase by two-thirds and the effects would carry over to
the adjacent subpopulation and affect fishery yield.

Projecting changes in population size (and age or stage
structure) using matrix formulations can be simulated by
matrix multiplication over a selected time period, while the
long-term (asymptotic) behavior is defined analytically by the
dominant eigenvalue (i.e., λ) of the projection matrix for
density-independent rates (Caswell, 2001). Note, however, that
matrix multiplication when the starting age distribution is not
close to the stable age distribution may produce transient, not
asymptotic, dynamics (Hastings et al., 2018). To avoid the
problem of transient dynamics in matrix multiplication, it is
best to use eigenanalysis for deterministic models. For stochastic
models, population projection is needed and the stochastic
λ will be less than the asymptotic λ for the same model
as a deterministic model. In the density-independent case, λ

integrates vital rates from all life-history stages into a single
measure of overall population fitness, and therefore provides a
clear and easily understandable metric of habitat value. Density-
dependent matrices require more complex analyses and yield
metrics of habitat value under stricter assumptions than density-
independent matrices (Caswell and Takada, 2004).

Implicit and explicit integration of habitat can be
accomplished by analyzing a population projection matrix
developed for a life-cycle diagram (e.g., Figures 4, 5), then
re-analyzing the model after altering one or more transition
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FIGURE 6 | Contribution of each nursery ground to the total recruitment of

age-0 juveniles of common sole Solea solea in the Eastern Channel. Gray bars

are the average contribution (calculated across all years) of each nursery to

total recruitment. Vertical dashed lines indicate the surface area of each

nursery as a percentage of the total surface area of nursery sectors, so that

the difference between bars and dashed lines highlights the contrast in

productivity. Figure reproduced with permission (Wiley and Sons license

4454871465571) from Rochette et al. (2013). Image from https://www.

wpclipart.com/animals/aquatic/fish/F/flatfish/Common_sole__Solea_solea_2.

png.html.

probabilities (F, G, P) that reflect habitat effects, and examining
the change in λ. For example, Ralph (2013) investigated the
effect of varying seagrass nursery area for blue crab juveniles
on λ (Figure 5). The life-cycle diagram is more complex than
the one in Figure 4 because Ralph (2013) developed separate
spatially-explicit projection matrices on a semi-annual time step
for summer and winter seasons (Figure 5).Habitats were defined
as vegetated and unvegetated juvenile nurseries. Vegetated
habitats were generally seagrass beds, whereas unvegetated
habitats were mud and sand subtidal flats. Habitat was integrated
explicitly because mortality rates of juveniles in vegetated and
unvegetated nurseries were varied based on field experiments
of juvenile survival. The analysis demonstrated that λ could
be increased from negative to positive population growth by
increasing the area of seagrass nursery habitat.

Implicit integration of habitat in a matrix model that also
uses the finite population growth rate comes from Fodrie
et al. (2009). They considered the demographic consequences
related to utilization of nursery habitat alternatives by juvenile
California halibut. Habitats were defined as four juvenile nursery
habitats (exposed coast, bay, lagoon, and estuary). Bays were
characterized by low-tide surface areas >84 ha, average depths
>4 m, and area-to-perimeter ratios >10 ha km−1. Lagoons were

FIGURE 7 | Fitness of a California halibut Paralichthys californicus population

resulting from the percentage of juvenile fish that utilized exposed coast vs.

embayment habitat as nurseries during 1987, 1988, 2002, and 2003. Dashed

line represents a stable population (λ = 1). Figure adapted with permission

(Inter-Research) from Fodrie et al. (2009). Image from http://www.

channelislandssportfishing.com/halibut-fishing-california.

characterized by low-tide surface areas of 35 to 84 ha km−1,
average depths of 3 m, and area-to-perimeter ratios between 2.4
and 8.4 ha km−1. Estuaries were described by low-tide surface
areas <25 ha and average depths <2.5 m. Estuaries were also
characterized by high wetland (salt marsh) cover, resulting in low
area-to-perimeter ratios (<2 ha km−1). Exposed coast consisted
of shallow-water, exposed coastal habitat. Habitat was integrated
implicitly by using habitat-specific densities in cohort life tables
to estimate mortality rates.

Recently, the most widely-used metrics of nursery value
have been total production of individuals to an adult stock or
unit-area production to an adult stock (Sheaves et al., 2015).
Fodrie et al. (2009) demonstrated that these metrics of nursery
“value” can be decoupled from the impacts of nursery use on λ.
Although alternative juvenile habitats (exposed coast and coastal
embayments) could contribute an approximately equal number
of recruits to the adult stock, positive population growth (λ >

1) depended critically on the subpopulations of juveniles that
utilized coastal embayments, such as bays, lagoons, and estuaries
(Figures 4, 7). Conversely, the juvenile subpopulation along
the exposed coast contributed negatively to overall population
growth (λ < 1) in three of the 4 years of the study due to elevated
juvenile mortality in that habitat (Figure 7).

Effective management requires incorporation of spatial
ecology and subpopulation connectivity into management plans,
and matrix projection models are amenable to metapopulation
modeling approaches in which multiple subpopulations are
connected via dispersal, emigration, and immigration of larvae.
Moreover, comprehensive evaluation of how habitats affect
metapopulation source-sink dynamics (Lipcius and Ralph, 2011)
is needed to inform application of metapopulation concepts in
spatial management of populations connected via larval dispersal
(Botsford et al., 2003; Figueira and Crowder, 2006; Lipcius et al.,
2008, 2015; Holstein et al., 2015; Puckett and Eggleston, 2016).
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FIGURE 8 | Spatiotemporal variation in metapopulation oyster reef source vs. sink status according to oyster reef type for the eastern oyster Crassostrea virginica.

Subtidal cultch (= settlement substrate) reefs are those in which the North Carolina Division of Marine Fisheries (NCDMF) spreads oyster shells or other substrate on

the estuarine bottom, followed by natural oyster larval settlement and growth, and harvest by the fishery when oysters reach legal size. Subtidal sanctuaries are oyster

reefs generally created by the NCDMF, and are no-harvest, broodstock reefs. Hardened shorelines include pilings, sea-walls and rock rip-rap. Intertidal reefs include

those natural intertidal oyster reefs located in two water bodies, each with varying mean demographic rates. Source-sink status (λc) of each reef (by reef type) during

each May-June time step between 2012-2016 (assuming larval mortality rate of 10% day−1). λc ≥ 1 indicates that a given reef functioned as a source during time t,

and λc < 1 as a sink. Figure adapted with permission (S. Theuerkauf, copyright holder) from Theuerkauf (2017).

Recently, Theuerkauf (2017) adapted a size-structured, discrete-
time matrix metapopulation model (Puckett and Eggleston,
2016) to explore local and regional population dynamics of
exploited bivalves; in this case 646 reefs of the eastern oyster
in Pamlico and Core Sounds, North Carolina served as habitat.
Themetapopulationmodel: (1) evaluated the spatial distribution,
areal footprint, and initial population size of all oyster reef
types within the estuary, (2) determined transition probabilities
by reef type and intra-annual oyster size classes explicitly with
field data, (3) determined size-specific oyster fecundity estimates,
(4) quantified local larval retention and inter-reef connectivity
via larval dispersal simulations, (5) simulated metapopulation
dynamics throughout the estuary using a demographic matrix
model over 5 years (2012-2016), and (6) evaluated consistency in
metapopulation source-sink structure over space and time. Each
reef ’s contribution to the metapopulation was calculated based
on whether the reef-specific (local) population growth rate (λc)
was positive or negative (Figueira and Crowder, 2006). For the
May-June spawning and recruitment periods, subtidal no-take
sanctuaries were the only reef type with a mean λc > 1 and thus
acting as sources (Figure 8); reefs serving frequently as sources
were generally located in the northeastern portion of Pamlico
Sound (Figure 9). Importantly, the results of the modeling were
validated with extensive field data (Figure 10), which should be
attempted whenever modeling exploited populations.

Dynamic Models: Individual-Based Models
Individual-based models (IBMs) operate by tracking the traits
of individuals as they are affected by growth, movement,
reproduction, and mortality (DeAngelis and Mooij, 2005). The
higher-order outcomes, such as population abundance, average
weight-by-age, and spatial distributions, are the sum (or average)
of the traits of the individuals in time and space (Grimm and
Railsback, 2013). IBMs can be considered a more resolved,
structured approach than the widely-usedmatrix (age- and stage-
based) projection model (Caswell, 2001), which follows groups of
individuals as a state variable (e.g., number of individuals in an
age-class). Like IBMs, the physiologically-structured population
modeling approach (De Roos et al., 1992; Metz and De Roos,
1992) also explicitly shows inter-individual variability and, like
IBMs, can be used to implicitly and explicitly assess habitat effects
on population dynamics (Table 1). Our discussion focuses on
IBMs but applies to individual-based approaches in general.

IBMs simulate discrete individuals and thus allow for the time
history of what each individual experiences (e.g., temperature,
food) to be recorded. The flexibility of IBMs allows for many
choices of the traits of individuals to be followed, and the rules
and processes on how these traits change with an organism’s
internal state and environmental conditions, and thus the
structure of many IBMs, are highly influenced by the modeler’s
decisions. Also, data to calibrate and validate an IBM are needed

Frontiers in Marine Science | www.frontiersin.org 12 June 2019 | Volume 6 | Article 280

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Lipcius et al. Modeling Quantitative Habitat Value

FIGURE 9 | Spatiotemporal variation in metapopulation source vs. sink status for eastern oyster Crassostrea virginica. Frequency of λc ≥ 1 at all reefs across the

five-year model time frame (assuming a larval mortality rate of 10% day−1). λc ≥ 1 indicates that a reef functioned as a source during time t, and λc < 1 as a sink.

Green dots represent frequent ‘source’ reefs (i.e., λc ≥ 1, 31-50% of the time), red dots represent ‘sink’ reefs (i.e, λc ≥ 1, 0% of the time). Figure adapted with

permission (S. Theuerkauf, copyright holder) from Theuerkauf (2017).

at both the individual level and the population and higher
levels (Railsback et al., 2002); both are rarely available for most
systems. Unlike matrix projection and physiologically-structured
approaches, IBMs are not grounded in a rigorous mathematical
framework and therefore their analyses, interpretation, and
documentation vary greatly, making evaluation and comparisons
difficult (Grimm et al., 2006; Grimm and Railsback, 2013;
DeAngelis and Grimm, 2014).

Habitat considerations are included in many IBMs of
coastal fish and shellfish (Rose, 2000; DeAngelis and Mooij,
2005; DeAngelis and Grimm, 2014). Often, habitat is included

with habitat conditions underlying the specification of process
parameter values and calibration and validation data that are
used in model development and testing. Each IBM has a domain
of applicability that is defined by the conditions (including
habitat) for which one remains confident in model realism (Rose
et al., 2015b). As one moves outside this domain and into new
parameter values and population and habitat conditions, the
confidence in model predictions diminishes due to increasing
uncertainty whether the model structure and testing (validation)
results still apply under the new conditions. Thus, adding to the
difficulty in documenting IBMs is the need to document and test
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FIGURE 10 | Relationship between observed and predicted population size of

oysters using a metapopulation model at natural subtidal and restored reefs of

eastern oyster Crassostrea virginica. Estimates of observed population size

were derived from field sampling of natural subtidal and restored reefs during

2012; estimates of predicted population size were derived from

metapopulation model simulations corresponding to the same time period

(assuming a larval mortality rate of 10% day−1). Linear least-squares

regression of log10-transformed data (p < 0.001). Figure adapted with

permission (S. Theuerkauf, copyright holder) from Theuerkauf (2017). Oyster

figure derived from http://cbf.typepad.com/chesapeake_bay_foundation/

2015/04/restoring-the-coral-reefs-of-the-chesapeake.html.

both implicit and explicit representations of habitat effects within
the models.

IBMs can be useful as a submodel for specific life stages and
habitats because the effects of habitat can be inserted into the
model to represent habitat effects on individuals measured in
the field or laboratory. The IBM then scales these effects on
individuals up to higher levels, such as recruitment or numbers
surviving to a certain stage. The challenge with IBMs is that
they are often applied on fine spatial and temporal scales for
a selected area, and the predictions are representative of that
area or area type but difficult to generalize to a population or
community level. IBMs can be used to simulate specific key life
stages, such as egg to recruitment survival (Rose and Cowan,
1993) andmigratory route effects on juvenile survival and growth
(Maes et al., 2005). In full life-cycle models, including spatially
explicit, the young for the next year come from the adults within
the model (Rose et al., 2015a), which permits examination of
multi-generation effects of habitat but also requires information
on all life stages.

We use three IBM analyses to illustrate how IBMs can be used
to address fundamental and frequently encountered questions
related to habitat and coastal fish and shellfish (Rose et al., 1993;
Butler et al., 2005; Maes et al., 2005). The analysis of Rose et al.
(1993) illustrates a mix of implicit and explicit analysis of habitat
effects on striped bassMorone saxatilis recruitment, while Butler
et al. (2005) illustrates an explicit analysis of how changes in
habitat affect spiny lobster Panulirus argus recruitment in the
Florida Keys (Table 1). The example by Maes et al. (2005), like
Butler et al. (2005), also illustrates an explicit analysis but using a

FIGURE 11 | States over time (A) and cumulative survival (B) of three

different migration strategies for North Sea herring Clupea harengus (Maes

et al., 2005): optimal habitat choice, a forced stay at open sea, and random

habitat choice. Errors bars for the random migration represent standard errors

of the means of 10 randomized trajectories drawn from a uniform distribution.

Time (in weeks) begins on 15 April 1989 (week 1) and ends on 30 March 1990

(week 52). Figure reproduced with permission (Wiley and Sons license

4452010896683) from Maes et al. (2005). Herring figure derived from https://

fisheries.msc.org/en/fisheries/spsg-ltd-north-sea-herring/about/.

dynamic, state-variable approach to identify optimal habitat use
of juvenile North Sea herring Clupea harengus (Table 1).

Rose et al. (1993) used an IBM of striped bass (Rose and
Cowan, 1993) to examine habitat effects on recruitment with a
mix of implicit and explicit integration of habitat effects. The
habitat consisted of a single patch (volume = 7.84 million m3) for
100 spawning females and resultant eggs, larvae, and juveniles.
Temperature, toxins, and bottom area were varied with functions
relating these variables to growth, prey availability, and mortality
of eggs, larvae, and juveniles. Larval mortality was explicitly
integrated into the model as a function of temperature derived
from lab experiments (Morgan et al., 1981). In contrast, juvenile
mortality was incorporated implicitly; bottom area of the patch
was reduced from baseline to mimic crowded conditions and
fewer benthic prey for juveniles due to warm temperature-low
DO squeeze.
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The model started with a specified set of female spawners,
and their eggs were then followed daily as they became
yolk-sac larvae, larvae, and juveniles until reaching age-1.
Environmental variables were daily temperature and daily
densities of zooplankton and benthic prey. Eggs and yolk-sac
larvae developed based on temperature; larvae and juveniles grew
in weight using a bioenergetics equation with a feeding submodel
that combined preferences with densities of the different prey
types in a type-II functional response of predators to prey
(Holling, 1959; Hassell, 1978). Mortality rate was assumed
constant for eggs and yolk-sac larvae, and decreased with size
(length determined from weight) for larvae and juveniles. All
simulations started with the same number and size of female
spawners and the basic comparisons were based on the predicted
recruitment (number of individuals surviving to age-1).

A suite of habitat effects was examined by varying model
inputs (e.g., warmer temperatures), imposing changes to model
parameter values related to mortality rate (either total mortality
or based on degree of feeding activity), growth rate, and capture
success of prey, or by changing the shape of the model spatial
box to force crowded conditions, which reflects intraspecific
competition. Both chronic changes, which affected all individuals
in a life stage for the entire time, or episodic changes (e.g.,
mimicking a few days of warmer temperature or a toxic spill
event) were simulated. While the temperature effects were
explicit, as temperature was a direct input into the model, other
effects such as increased mortality, reduced feeding success, and
reduced juvenile physical habitat were realistic but imposed
implicitly by forcing these changes. Chronic changes to mortality
imposed on eggs and larvae generally resulted in the largest
reductions in recruitment, whereas reduction in bottom area of
juveniles (50% and even 90%) had smaller effects. The analysis
illustrates how explicit and implicit analyses can be combined,
enabling comparison of chronic and episodic effects across
habitat-related stressors such as temperature, toxics, and reduced
physical habitat.

Butler et al. (2005) simulated spiny lobster survival in Florida
Bay from 1988 to 1996 starting at settlement through emigration
to adult habitat about 18 months later. Daily growth (molting),
survival, and movement of individuals was simulated in a 7× 35
grid of cells configured for the strip of Florida Bay bordering the
Florida Keys. Each cell was characterized by specified percentages
of different habitats (sponges, solution holes, other shelters, and
open space). Starting with incoming post-larval lobster, daily
growth was based on temperature and mortality was dependent
on habitat type. Each day lobsters left their shelters to forage
and then competed for preferred shelters (scramble) upon their
return. A suite of size-based rules was used to simulate site
selection of the daily returning lobsters. Habitat losses due to
algal blooms were simulated by reducing abundances (e.g., 60%
reduction in 20% of grid cells for 7 months) of loggerhead and
other sponges (i.e., preferred habitats) in selected grid cells.

Habitat was a multi-patch grid of 245 cells of nursery
habitat. Nursery habitats were characterized as open bottom,
seagrass, and hard-bottom habitats. Hard-bottom cells were
further described as loggerhead sponge, other sponges, solution
holes, octocoral-sponge complexes, and other shelters, mainly

scleractinian corals. Habitat was incorporated explicitly because
mortality and movement in each habitat were measured
empirically through field experiments and mark-recapture
studies, respectively. Habitat-specific carrying capacities, which
influenced movement rates, were estimated from field densities.
Surprisingly, predicted population abundances without and with
the algal blooms were similar, even though the loss of habitat
caused dramatic shifts in the shelter types used by the lobsters.

Maes et al. (2005) examined how different migration
paths of individual juvenile herring in the North Sea would
affect growth and survival over a 2-year simulation. Five
nursery habitats were defined, ranging from the upper estuary
to open sea, which differed in temperature, turbidity, and
copepod density. Temperature affected growth and mortality
via predation risk; turbidity and copepod density affected
feeding tactics; and turbidity also affected predation risk.
Habitats were nurseries where whiting preyed on herring. In the
estuaries temperature and turbidity varied systematically across
environmental gradients, and affected predation intensity by
whiting on herring. Habitat was built into the model explicitly
because the survival of herring was dependent on consumption
rates of whiting, which were specific functions of temperature
and turbidity.

The approach used a forward iteration approach with 1-
week time steps to determine the optimal (maximum growth
and survival) usage of the five habitats over the 2-year period
(Figure 11). Weekly usage of the habitat (and resulting weight)
were then compared for alternative assumptions such as no
predation risk, and spatially-constant temperature, turbidity, or
copepod density. The advantages of optimal migration routes
were assessed by comparing predicted final body weight and
survival under the optimal route with that predicted under
random movements and no migration. They concluded that
estuarine residence resulted in fitter individuals because of higher
survival at the expense of slowed growth.

The preceding IBMs are stand-alone models. Radchuk et al.
(2016) made pairwise comparisons between population-based
and individual-based models for a range of organisms, including
a few marine taxa. They contrasted the performance of the two
model types when used as Population Viability Analysis (PVA)
models to estimate extinction risk under different scenarios.
Their main findings were that the availability and resolution
of demographic, spatial, and dispersal data were the primary
determinants of the choice of model complexity, while the
specific model purpose appeared to be unimportant when
deciding on a population- or individual-based model.

Role of Dynamic Energy Budget Models
Martin et al. (2012) made a plea for using Dynamic Energy
Budget (DEB) theory (Van der Meer, 2006; Kooijman, 2010;
Nisbet et al., 2010) as a unifying framework to describe the role
of individual organisms in terms of the acquisition of resources,
the allocation to maintenance, growth and reproduction, and
the consequences for survival. DEB theory also highlights the
central role of the individual in studies of mass and energy
balances, and as such is an ideal basis for IBMs and other
individual-based approaches. The standard DEB model can in
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FIGURE 12 | Habitat Suitability Index model for eastern oyster Crassostrea virginica. (A) Depth suitability layer. (B) Salinity suitability layer. (C) Bottom type suitability

layer. (D) Habitat suitability index output: red areas are unsuitable oyster habitat, green areas are optimal oyster habitat in the Great Wicomico River, a western shore

tributary of lower Chesapeake Bay. Figure reproduced with permission (Creative Commons Attribution 4.0 International Public License) from

Theuerkauf and Lipcius (2016).

principle be used for all animal species; only the parameters
will differ among species. As Martin et al. (2012) write, “DEB
is appropriate as a building block for IBMs because it is a
relatively simple model that translates environmental conditions
to individual performance (growth, survival and reproduction)
and is consistent with first principles such as conservation of
energy. This is important because the tradeoffs in life-history
traits that DEB specifies (e.g., growth vs. reproduction, time
and size to maturation) strongly influence population dynamics.
Moreover, because DEB is a generic theory, it can be applied
to virtually all species, which would facilitate broader insight
from specific studies and comparisons between species.” DEB
models have been used to model the population dynamics of
marine species (Kooi and Van der Meer, 2010; van der Meer
et al., 2011), but not with a strong emphasis on the effects of
spatial variation in environmental and habitat conditions. Use
of the DEB approach, with its well-established formulation and
application protocols, will help with the synthesis and integration
of IBMs across species and habitat analyses.

Static Models
Statistical modeling techniques are proficient in accommodating
the relationship between fish species distribution and
surrounding environmental features (Guisan et al., 2002).
Various statistical methods have been used to quantify this
relationship for several life stages of numerous species, namely:
(1) to identify environmental variables that define species
distributions, (2) to fit species spatial distribution and predict
distribution for a given set of environmental variables, and (3) to
map realized and potential habitat for a species.

Two commonly used statistical approaches are habitat
suitability index (HSI) models and habitat suitability modeling
(U.S. Fish and Wildlife Service, 1980). HSI models consist of a
spatial approach that scores habitat suitability based on previous
knowledge on habitat use by the species (Brown and Hartwick,
1988; Pollack et al., 2012; Theuerkauf and Lipcius, 2016). First,
a spatially resolved habitat map is built for each environmental
feature and the habitat map is reclassified to a 0-1 suitability
index scale in each grid cell, where 1 is optimal and 0 is
unsuitable, based on habitat associations or requirements of the
species described in literature. Then, the geometric mean of
the suitability index values for all habitat variables is calculated
by grid cell, and the results mapped. HSI models have been
commonly used in efforts to conserve and restore populations
and biodiversity.

For example, Theuerkauf and Lipcius (2016) developed
and validated a habitat suitability index model to characterize
optimal restoration habitats for eastern oyster in Chesapeake
Bay. The HSI was based on substrate type, water depth, and
salinity (Figure 12), which affect oyster demographic rates and
reef persistence. The obtained HSI mapping was compared
with a mapping of oyster density derived from independent
field surveys (Figure 13), which validated the HSI model and
demonstrated that the HSI is a reliable predictor of oyster
abundance and reef persistence.

Habitat suitability modeling approaches rely more on
statistical analyses than HSI models, and are based on the fitting
of a statistical model to quantify the relationship between species
abundance distribution and environmental variables. Ultimately,
this approach allows one to predict the potential distribution
of a species for a given set of environmental variables based
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FIGURE 13 | Sigmoidal relationships between habitat suitability index score

and associated live adult oyster density on high-relief and low-relief reefs of

eastern oyster Crassostrea virginica in the Great Wicomico River, a western

shore tributary of lower Chesapeake Bay. Figure reproduced with permission

(Creative Commons Attribution 4.0 International Public License) from

Theuerkauf and Lipcius (2016).

on the fitted models. Preferred and potential habitat have been
modeled via several statistical techniques, such as Generalized
Linear (GLM) and Generalized Additive (GAM)Models (Guisan
et al., 2002), regression trees (Fodrie and Mendoza, 2006),
regression quantiles (Vaz et al., 2008), and mixed approaches
(Lauria et al., 2011).

For instance, Le Pape et al. (2003) fitted a GLM to the
spatial distribution of 0-group common sole in coastal areas
and estuaries of the Bay of Biscay using an 11-year data set
on bathymetry, sediment structure, and river plume influence
as descriptors. A Delta approach with two sub-models was
applied: Binomial for presence/absence, and Gaussian for density
when present. The approach demonstrated that very shallow
(<5 m) muddy areas comprised 60% of all juvenile sole but
represented only 10% of the study area. On average estuarine
waters represented only 24% of total surface area but included
48% of all 0-group juveniles, though this varied greatly from
year to year depending on the extent of the river plume at the
beginning of the settlement period.

Validation is critical for the use of habitat suitability models
as predictive tools, as demonstrated by Vasconcelos et al. (2013).
They calibrated and attempted to validate species-specific Delta
GLMs to predict the distribution of juvenile subpopulations in
nursery grounds, including common sole, Senegalese sole Solea
senegalensis, European flounder Platichthys flesus, and European
seabass Dicentrarchus labrax. Juveniles inhabit shallow coastal
areas and estuaries, but do not distribute evenly (Vasconcelos
et al., 2010). Key variables for species distribution were
identified: temperature, salinity, andmud content in sediment for
presence/absence, and salinity and depth for density. However,
only for Senegalese sole were Binomial (presence/absence) and

coupled Gamma (density) models accurate and robust, despite
some moderate bias and inconsistency in predicted density. The
mismatches between goodness-of-fit, accuracy and robustness of
positive density models, as well as the difference in performance
of presence/absence and density models demonstrated the
importance of validation procedures.

CONCLUSIONS AND
RECOMMENDATIONS

We anticipate that efforts will continue in using models to
quantify habitat effects on recruitment and population dynamics
of fish and invertebrates in coastal areas. Habitat alteration and
loss are continuing in coastal zones due to accelerating human
development (Lotze et al., 2006; Airoldi and Beck, 2007). Many
fish and invertebrate species rely on coastal habitats for one or
more of their life stages (Seitz et al., 2014; Vasconcelos et al.,
2014; Brown et al., 2018); thus, there will be increasing demands
for models that can be used to quantify how changes in habitat
will affect these populations. We use our review as the basis
of the following recommendations and comments about the
incorporation of habitat in population modeling of coastal and
marine fish and shellfish.

Define the Goal of Modeling and Assess
Information Availability
When defining the question asked of amodeling effort, specifying
how the model predictions and results will be used and
interpreted is essential for the choice of model. Population
modeling that includes habitat effects can be purely theoretical
or serve as the basis for management decisions. The use
of model results influences how one formulates the model
and, therefore, how habitat effects can be included. Another
aspect of choosing an appropriate model deals with information
availability. A model choice demanding detailed information
can only be applied when the data are actually available, which
seems obvious, but often long-term, monitoring programs are
not designed to obtain the information necessary for model
parameterization. For some models data from experiments are
needed for full parameterization, especially concerning size-
dependent physiological rates (e.g., oxygen demand, prey attack
rates). Increasing awareness of a potential mismatch between
monitoring data and data requirements from a modeling
perspective has already resulted in closer collaborations within
the international community (e.g., ICES Working Group on
Biological Parameters, ICES Planning Group on Data Needs for
Assessment and Advice).

Use Precise Terminology and Define
Habitat Characteristics Explicitly
Precision is needed in defining what is meant by habitat. The
term “habitat” should be defined and assumptions about how it
affects vital rates and population processes detailed. Otherwise,
statements about population losses and gains in habitat are not
ecologically meaningful nor can they be effectively modeled
or communicated.
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Habitat is already prevalent in many models. Models often
include some aspects of habitat and habitat effects but these
are often not delineated or documented. The data and other
conditions (e.g., state of the population) used to develop and test
a specificmodel are conditional on a set of habitat conditions.We
suggest that a statement of these conditions (e.g., low population
density at heavily fished sites vs. high densities at unexploited
areas), plus clear discussion of how habitat aspects are both
explicitly and implicitly represented within the model, be part of
the model description.

For instance, in some of the examples provided in this review
(Table 1), habitat was defined as follows. In the oyster restoration
model (Jordan-Cooley et al., 2011), habitat was quantified by the
volume (height) of oyster reef, and concentration of sediment in
the water column and on the reef; and, in the model of California
halibut (Fodrie et al., 2009), habitat was defined as the area of
each of two nursery habitats. The remaining examples similarly
described habitat in precise, quantitative terms (Table 1).

We have shown that the commonly used types of population
models can be easily adapted to examine habitat effects, both in
terms of habitat type (i.e., quality), habitat quantity, and locations
within a broader metapopulation. The key is how habitat affects
the vital rates and processes and then these can be incorporated
into most models that include the effects of habitat (explicit
representation) or via changes in the vital rates (implicitly)
without actually specifying a “habitat” variable in the model. The
documentation of such effects should be presented clearly. Using
existing models to assess habitat effects should be encouraged
but also extra care is needed when density-dependent processes
(growth, mortality, reproduction, movement) or aspects of
habitat are already included in the model. Adding any new
components, or modifying existing components, to a model
needs to be done such that the integrity and continuity of the
model is maintained. For example, a model originally fit for tests
with spawner-recruit data would need to be re-checked again
once the modifications to include habitat effects are made.

Predicted Responses to Habitat Changes
Cannot Always be Anticipated
We used a suite of example models (Table 1) that illustrate
both intuitive (predictable) and non-linear (including counter-
intuitive) responses to habitat change. The classical logistic model
showed how changes in r and K can result in nearly proportional
changes in population abundance. The juvenile-adult model
of marine fish species generated alternative stable states as
the productivity was shifted from juvenile to adult habitats,
while the eastern oyster model generated different stable states
depending on the initial height of the reef. The stage-basedmatrix
models (blue crab, California halibut) showed relatively smooth
responses in population growth rates to changes in nursery
habitat. Simulated eastern oyster metapopulation dynamics
identified how no-take sanctuaries served as population sources
to the broader oyster population, and how source populations
were distributed in space and time. The IBMs for striped bass and
for spiny lobster demonstrated how large reductions in physical
habitat, when imposed on organisms with highly productive food

(benthos for striped bass) or behavioral flexibility (movement by
spiny lobster), can result in small population responses. These
results show that reliance on simple or proportional population
responses to changes in habitat should be avoided as the default
assumption without clear and documented evidence.

Combinations of Modeling Approaches for
Simulating Habitat Effects Is Promising
Many species select from a diverse portfolio of habitat alternatives
for reproduction, foraging, or evading predators. Variability
in habitat choice among individuals within a species, as well
as ontogenetic migrations among habitats as species age, add
significant complexity for quantifying the functional value
of purported essential fish habitats. Thus, despite a general
appreciation for the importance of high-quality habitat, and a
vast literature on habitat-specific growth and mortality rates
(Vasconcelos et al., 2014), a synthesis that scales up from specific
habitat use and vital-rate components toward population-level
dynamics is lacking, which has limited the formal and more
meaningful inclusion of habitat into management plans (Caddy,
2013). Including population fitness as a metric of nursery value,
a technique that considers the influence of all life-history stages,
seems particularly advantageous for species in which the relative
impacts of perturbations to both early (e.g., habitat degradation,
bycatch) and late (e.g., harvest) life-history stages of a fluctuating
population confound one another (Lande and Barrowclough,
1987). We foresee that such analyses examining the quantitative
impacts of habitat utilization on fish or invertebrate demography
will increasingly influence management.

We see many opportunities to combine modeling approaches
to simulate habitat effects. A particularly promising approach is
coupling DEB models with IBMs (Martin et al., 2012; Sibly et al.,
2013. DEB models provide a solid foundation for simulating
the growth and reproduction responses of individuals to habitat
changes, which can be easily scaled to the population level using
the existing techniques for individual- or agent-based modeling
(DeAngelis and Mooij, 2005; Grimm and Railsback, 2013).
Another coupling that has been used before and shows promise
is linking statistical models of habitat quality with population
models (Larson et al., 2004; Clark et al., 2008), which provides
a way to reduce the multidimensional aspects of habitat into a
single index that can be linked to vital rates and key processes.
The use of multiple approaches to address a problem can also
be effective. Comparing statistically-based changes in habitat
with population modeling-based responses enables insight into
the role that ecological processes play in modulating population
responses to habitat.

Statistical approaches can be used as the means for collapsing
the multiple attributes of habitat into a single overall measure
of quality, which could then be used in a dynamic population
model to alter process rates. These statistical approaches can
be especially useful when simulating the effects of habitat
on movement because there are many examples of realistic
simulation of behavioral movement based on one or two cues,
such asWatkins and Rose (2013), but we have far fewer examples
of movement modeling of fish based on three or more cues.
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Reducing the dimensionality of habitat effects on movement by
collapsingmultiple aspects of habitat into a single suitability value
could help enable simulation of responses to complicated changes
in habitat.

CHALLENGES

Quantitative assessment of habitat effects using population
dynamics models has several challenges. Population models,
especially in fisheries, have a long history of using relatively
aggregated formulations. For example, many of the population
dynamics models that underlie stock assessments use an annual
time step with all of the early life-stage dynamics encompassed
by a single spawner-recruit relationship and configured for
a single area assumed to be spatially homogeneous (Walters
and Martell, 2004). Age-structured Virtual Population Analysis
(VPA) and matrix projection models focus on reproduction
and mortality, and less so on growth, movement, and spatial
variation. Realistic incorporation of habitat effects operating
on specific life stages at relatively fine spatial and temporal
scales is achievable but not straightforward because some of
the data needed are often not available. In addition, population
models allow for investigation of the many combinations of
environmental stressors that affect population dynamics, but
this further stretches the available data and information. As
with ecological models in general, population models always
raise issues about sufficient information and data for calibration,
validation, and sensitivity and uncertainty analyses (Araujo and
Guisan, 2006).

PROGNOSIS

We expect the issue of habitat losses and gains (including due
to restoration) to provide many opportunities for quantitative
evaluation of population-level impacts using modeling. Effective
development of the models and communication of the results
and lessons learned are essential for progress beyond a suite
of site-specific analyses. Subsequently, synthesis and integration

of approaches and results over sites, problems, habitat types,
and modeling approaches will advance the field of habitat-based
population modeling.
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